سفارش تبلیغ
صبا ویژن
 
پشتیبانخانهنشانی ایمیل من

dmeفیزیک

قرآن را فرا گیرید که بهترین سخن است و در آن تفقّه کنید که بهار دلهاست واز روشنی آن شفا بجویید که شفای سینه هاست . [امام علی علیه السلام]

 RSS 

کل بازدید ها :

9694

بازدیدهای امروز :

0

بازدیدهای دیروز :

0


وضعیت من در یاهو

یــــاهـو


درباره من


لوگوی من

dmeفیزیک


 اوقات شرعی

 لینک دوستان

موئسسه ی فیزیک امریکا
اموزش کامپیوتر (ترفندها)
عکس عکس عکس
انجمن فیزیک اروپا
ا نجمن فیزیک پزشکی ایران
موئسسه ی ملی فیزیک ماده ی چگال ایتالیا


اشتراک

 


نوشته های قبلی

بهار 1385


[ خانه | مدیریت وبلاگ | شناسنامه | پست الکترونیک ]

devil تاریخ دوشنبه 85/1/28 ساعت 9:1 صبح

راکتور هسته‌ای:

راکتورهای هسته‌ای دستگاه‌هایی هستند که در آنها شکافت هسته‌ای کنترل شده رخ می‌دهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترون‌ها بکار می‌روند. اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و به دنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته می‌شود.

اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر 1942 بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی ، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هسته‌ای ، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هسته‌ای فعال بود.

ساختمان راکتور

با وجود تنوع در راکتور‌ها ، تقریبا همه آنها از اجزای یکسانی تشکیل شده‌اند. این اجزا شامل سوخت ، پوشش برای سوخت ، کند کننده نوترونهای حاصله از شکافت ، خنک کننده‌ای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت می‌باشد.

سوخت هسته‌ای


سوخت راکتورهای هسته‌ای باید به گونه‌ای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار می‌روند. 232Th ، 233U ، 235U ، 238U ، 239Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع می‌باشند. تفاوت بین سوخت یک خاصیت در دسته‌بندی راکتورها است.

در کنار قابلیت شکافت ، سوخت بکار رفته در راکتور هسته‌ای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی ، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد. هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن ، ساخت راحت ، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایده‌های سوخت است.


غلاف سوخت راکتور


سوختهای هسته‌ای مستقیما در داخل راکتور قرار داده نمی‌شوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار می‌گیرند. پوشش یا غلاف سوخت ، کند کننده و یا خنک کننده از آن جدا می‌سازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری می‌کند. همچنین این غلاف می‌تواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هسته‌ای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.


 

مواد کند کننده نوترون

یک کند کننده ماده‌ای است که برای کند یا حرارتی کردن نوترونهای سریع بکار می‌رود. هسته‌هایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده می‌باشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده ، چند ماده هستند که می‌توان از آنها استفاده کرد. هیدروژن ، دوتریم ، بریلیوم و کربن چند نمونه از کند کننده‌ها می‌باشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار می‌گیرد. همچنین ایزوتوپهای هیدروژن ، به شکل آب و آب سنگین و کربن ، به شکل گرافیت به عنوان مواد کند کننده استفاده می‌شوند.

خنک کننده‌ها

گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میله‌های سوخت را ذوب کند. حرارتی که از سوخت گرفته می‌شود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایین‌تر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.

از مایعات و گازها به عنوان خنک کننده استفاده شده‌ است، مانند گازهای دی اکسید کربن و هلیوم. هلیوم ایده‌آل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کننده‌های مایع شامل آب ، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایده‌آلی نیست.





 

مواد کنترل کننده شکافت

 

برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع ، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.

انواع راکتورها

راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی ، ریع و میانی (واسطه) ، بر حسب مصرف سوخت به راکتورهای سوزاننده ، مبدل و زاینده ، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی ، راکتورهای اورانیوم غنی شده با 235U (راکتور مخلوطی Be) ، بر حسب خنک کننده به راکتورهای گاز (CO2مایع (آب ، فلز) ، بر حسب فاز سوخت کند کننده‌ها به راکتورهای همگن ، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت ، تولید نوکلید و تحقیقاتی تقسیم می‌شوند.


 

کاربردهای راکتورهای هسته‌ای

1-راکتورها انواع مختلف دارند برخی از آنها در تحقیقات ، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار می‌روند.

2-دوگروه اصلی راکتورهای هسته‌ای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هسته‌ای پایه ، مطالعات کاربردی تجزیه‌ای و تولید ایزوتوپها مورد استفاده قرار می گیرند.

 

 

 

 

شکافت هسته‌ای :

اگر نوترون منفردی به یک قطعه ایزوتوپ 235U نفوذ کند، در اثربرخورد به هسته اتم 235U ، اورانیوم به دو قسمت شکسته می‌شود که اصطلاحا شکافت هسته‌ای نامیده می‌شود.

در واکنشهای شکافت هسته‌ای مقادیر زیادی نیز انرژی آزاد می‌گردد (در حدود 200Mev)، اما مسئله مهمتر اینکه نتیجه شکستن هسته 235U ، آزادی دو نوترون است که می‌تواند دو هسته دیگر را شکسته و چهار نوترون را بوجود آورد. این چهار نوترون نیز چهار هسته 235U را می‌شکند. چهار هسته شکسته شده تولید هشت نوترون می‌کنند که قادر به شکستن همین تعداد هسته اورانیوم می‌باشند. سپس شکست هسته‌ای و آزاد شدن نوترونها بصورت زنجیروار به سرعت تکثیر و توسعه می‌یابد. در هر دوره تعداد نوترونها دو برابر می‌شود، در یک لحظه واکنش زنجیری خود بخودی شکست هسته‌ای شروع می‌گردد. در واکنشهای کنترل شده هسته‌ای تعداد شکست در واحد زمان و نیز مقدار انرژی بتدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگهداشته می‌شود.

انرژی شکافت هسته‌ای

کشف انرژی هسته‌ای در جریان جنگ جهانی دوم صورت گرفت و اکنون برای شبکه برق بسیاری از کشورها هزاران کیلو وات تهیه می کند (نیرو گاه هسته ای). بحران انرژی بر اثر بالارفتن قیمت نفت در سال 1973 استفاده از انرژی شکافت هسته‌ای بیشتر وارد صحنه کرد. در حال حاضر ممالک اروپایی انرژی هسته‌ای را تنها انرژی می‌داند. که می‌تواند در اکثر موارد جایگزین نفت شود. استفاده از انرژی شکافت هسته‌ای که بر روی یک ماده قابل احتراق کانی که بصورت محدود پایه گذاری می‌شود. برای سایر کشورها خطرات بسیار دارد در حال حاضر تولید الکتریسته با استفاده از شکافت هسته‌ای کنترل شده به میزان زیادی توسعه یافته و مورد قبول واقع شده است. تولید انرژی هسته‌ای در کشورهای توسعه یافته بخش مهمی از طرح انرژی ملی را تشکیل می‌دهد.

انرژی بستگی هسته‌ای

می‌توان تصور کرد که جرم هسته ، M ، با جمع کردن Z (تعداد پروتونها) ضربدر جرم پروتون و N تعداد نوترونها ضربدر جرم نوترون بدست می‌آید.

M = Z×Mp + N×Mn

از طرف دیگر M همیشه کمتر از مجموع جرمهای تشکیل دهنده‌های منزوی هسته است. این اختلاف به توسط فرمول انیشتین توضیح داده می‌شود که رابطه بین جرم و انرژی هم ارزی جرم و انرژی را برقرار می‌سازد. اگر یک دستگاه مادی دارای جرم باشد در این صورت دارای انرژی کلی E است. E = M C2 که در آن C سرعت نور در خلا و M جرم کل هسته مرکب از نوکلئونها و E مقدار انرژیی است که در اثر فروپاشی جرم M تولید می‌شود. بنابر این اصول انرژی هسته‌ای بر آزاد سازی انرژی پیوندی هسته استوار است. هر سیستمی که دارای انرژی پیوندی بیشتر باشد پایدار می‌باشد. در واقع جرم مفقود شده در واکنشهای هسته‌ای طبق فرمول E = M C2 به انرژی تبدیل می‌شود. پس انرژی بستگی اختلاف جرم هسته و جرم نوکلئونهای تشکیل دهنده آن است، که معرف کاری است که باید انجام شود تا نوکلئونها از هم جدا شوند.


مواد شکافتنی

مواد ناپایدار برای اینکه به پایداری برسند، انرژی گسیل می‌کنند تا به حالت پایدار برسد. معمولا عناصری شکافت پذیر هستند که جرم اتمی آنها بالای 150 باشد ،235U و 238U در معادن یافت می‌شود. 99.3 درصد اورانیوم معادن 238U می‌باشد.و تنها 7% آن 235U می‌باشد. از طرفی 235U با نوترونهای کند پیشرو واکنش نشان می‌دهد. 238Uتنها با نوترونهای تند کار می‌کند، البته خوب جواب نمی‌دهد. بنابر این در صنعت در نیروگاههای هسته‌ای 235U به عنوان سوخت محسوب می‌شود. ولی به دلایل اینکه در طبیعت کم یافت می‌شود. بایستی غنی سازی اورانیوم شود، یعنی اینکه از 7 درصد به 1 الی 3 درصد برسانند.

شکافت 235U

در این واکنش هسته‌ای وقتی نوترون کند بر روی 235U برخورد می کند به 236U تحریک شده تبدیل می‌شود. نهایتا تبدیل به باریوم و کریپتون و 3 تا نوترون تند و 177 Mev انرژی آزاد می‌شود. پس در واکنش اخیر به ازای هر نوکلئون حدود 1 Mev انرژی آزاد می‌شود. در واکنشهای شیمیایی مثل انفجار به ازای هر مولکول حدود 30 Mev انرژی ایجاد می‌شود. لازم به ذکر است در راکتورهای هسته‌ای که با نوترون کار می‌کند، طبق واکنشهای به عمل آمده 2 الی3 نوترون سریع تولید می‌شود. حتما این نوترونهای سریع باید کند شوند.



devil تاریخ دوشنبه 85/1/28 ساعت 8:47 صبح

نیروگاه اتمی :
نیروگاه اتمی در واقع یک بمب اتمی است که به کمک میله‌های مهارکننده و خروج دمای درونی بوسیله مواد ‏خنک کننده مثل آب و گاز ، تحت کنترل در آمده است. اگر روزی این میله‌ها و یا پمپهای انتقال دهنده مواد ‏خنک کننده وظیفه خود را درست انجام ندهند، سوانح متعددی بوجود می‌آید و حتی ممکن است نیروگاه نیز ‏منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی سابق.

دید کلی

طی سالهای گذشته اغلب کشورها به استفاده از این نوع انرژی هسته‌ای تمایل داشتند و حتی دولت ایران 15 ‏نیروگاه اتمی به کشورهای آمریکا ، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه ‏مهمتری میل آیلند (Three Mile Island) در 28 مارس 1979 و فاجعه چرنوبیل (Tchernobyl) در روسیه ‏در 26 آوریل 1986، نظر افکار عمومی نسبت به کاربرد اتم برای تولید انرژی تغییر کرد و ترس و وحشت از ‏جنگ اتمی و به خصوص امکان تهیه بمب اتمی در جهان سوم، کشورهای غربی را موقتا مجبور به تجدید نظر در ‏برنامه‌های اتمی خود کرد.


ساختار نیروگاه اتمی

نیروگاه اتمی از مواد مختلفی شکل گرفته است که همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. ‏این مواد عبارتند از:

ماده سوخت

ماده سوخت متشکل از اورانیوم طبیعی ، اورانیوم غنی شده ، اورانیوم و پلوتونیم است. که سوختن اورانیوم بر ‏اساس واکنش شکافت هسته‌ای صورت می‌گیرد.

نرم کننده‌ها

‎‏نرم کننده‌ها موادی هستند که برخورد نوترون های حاصل از شکست با آنها الزامی است و ‏برای کم کردن انرژی این نوترون ها به کار می روند. زیرا احتمال واکنش شکست پی در پی به ازای ‏نوترون های کم انرژی بیشتر می شود. آب سنگین (D2O) یا زغال سنگ (گرافیت) به عنوان نرم کننده نوترون ‏بکار برده می‌شوند.‏


میله‌های مهارکننده

این میله‌ها از مواد جاذب نوترون درست شده‌اند و وجود آنها در داخل راکتور اتمی ‏الزامی است و مانع افزایش ناگهانی تعداد نوترونها در قلب راکتور می‌شوند. اگر این میله‌ها کار اصلی خود را ‏انجام ندهند، در زمانی کمتر از چند هزارم ثانیه قدرت راکتور چند برابر شده و حالت انفجاری یا دیورژانس ‏راکتور پیش می‌آید. این میله ها می توانند از جنس عنصر کادمیم و یا بور باشند.‏


مواد خنک کننده یا انتقال دهنده انرژی حرارتی

این مواد انرژی حاصل از شکست اورانیوم را به خارج ‏از راکتور انتقال داده و توربینهای مولد برق را به حرکت در می آورند و پس از خنک شدن مجدداً به داخل ‏راکتور برمی گردند. البته مواد در مدار بسته و محدودی عمل می کنند و با خارج از محیط رآکتور تماسی ندارند. ‏این مواد می توانند گاز CO2 ، آب ، آب سنگین ، هلیوم گازی و یا سدیم مذاب باشند.‏


طرز کار نیروگاه اتمی

عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در ‏این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ 235U عمل شکست انجام می گیرد و ‏انرژی فراوانی تولید می کند. بعد از ورود نوترون به درون هسته اتم ، ناپایداری در هسته به وجود آمده و بعد از ‏لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دو تکه شکست و تعدادی نوترون می‌شود.

بطور متوسط تعداد نوترونها به ازای هر 100 اتم شکسته شده 247 عدد است و این نوترونها اتمهای ‏دیگر را می‌شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده اورانیوم به ‏صورت زنجیره‌ای انجام می‌شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد. در واقع ورود ‏نوترون به درون هسته اتم اورانیوم و شکسته شدن آن توام با انتشار انرژی معادل با ‏‎ Mev‎‏200 میلیون الکترون ‏ولت است.

این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات ‏است. که اگر به صورت زنجیره‌ای انجام شود، در کمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد کرد. اما ‏اگر تعداد شکستها را در توده اورانیوم و طی زمان محدود کرده به نحوی که به ازای هر شکست ، اتم بعدی ‏شکست حاصل کند شرایط یک نیروگاه اتمی بوجود می‌آید. ‏

نمونه عملی

نیروگاهی که دارای 10 تن اورانیوم طبیعی است قدرتی معادل با 100 مگاوات خواهد داشت و بطور متوسط ‏‏105 گرم 235U در روز در این نیروگاه شکسته می شود و همانطور که قبلا گفته شد در اثر جذب ‏نوترون بوسیله ایزوتوپ 239U ، 238U بوجود می‌آمد که بعد از دو بار انتشار ذرات بتا (‏الکترون) به 239Pu تبدیل می‌شود که خود مانند 235U شکست پذیر است. در این عمل 70 گرم ‏پلتونیوم حاصل می‌شود.

ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترونهای موجود در نیروگاه زیاد باشند مقدار جذب به مراتب ‏بیشتر از این خواهد بود و مقدار پلتونیومهای بوجود آمده از مقدار آنهایی که شکسته می‌شوند بیشتر خواهند ‏بود. در چنین حالتی بعد از پیاده کردن میله‌های سوخت می‌توان پلتونیوم بوجود آمده را از اورانیوم و ‏فرآورده‌های شکست را به کمک واکنشهای شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره کرد.




devil تاریخ دوشنبه 85/1/28 ساعت 8:40 صبح

نیروگاه حرارتی:

نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار می‌رود که در عمل پره‌های توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در می‌آورد. در نتیجه ژنراتور انرژی الکتریکی تولید می‌کند. نیروگاه حرارتی به مقدار زیادی آب نیاز دارد. در نتیجه در محلهایی که آب به فراوانی یافت می‌شود، ترجیحا از این نوع نیروگاه استفاده می‌شود. چون انرژی الکتریکی را به روشهای دیگری ، مثل انرژی آب در پشت سدها (توربین آبی) ، انرژی باد (توربین بادی) ، انرژی سوخت (توربین گازی) و انرژی اتمی هم می‌توان تهیه کرد. سوخت نیروگاه حرارتی شامل ، فروت و یا گازوئیل طبیعی است.

مشخصات فنی نیروگاه :

سوخت

سوخت اصلی نیروگاه ، سوخت سنگین (مازوت) می‌باشد که توسط تانکرها حمل و از طریق ایستگاه تخلیه سوخت در سه مخزن 33000 متر مکعبی ذخیره می‌گردد. سوخت راه اندازی ، سوخت سبک (گازوئیل) است که در یک مخزن 430 متر مکعبی نگهداری می‌شود.

آب

آب مصرفی نیروگاه ، جهت تولید بخار و مصرف برج خنک کن و سیستم آتش نشانی ، از طریق چاه عمیق تامین می‌گردد.

سیستم خنک کن

برج خنک کن نیروگاه از نوع تر می‌باشد و 18 عدد فن (خنک کن) دارد که هر یک دارای الکتروموتوری به قدرت 132kw و سرعت سرعت 141RPM می‌باشد و بوسیله دو عدد پمپ توسط لوله‌ای به قطر 5.2 متر آب مورد نیاز خنک کن تامین می‌گردد. دمای آب برگشتی در برج خنک کن 29.6 درجه سانتیگراد و دمای آب خروجی از برج 21.6 درجه سانتیگراد می‌باشد.

سیستم تصفیه آب جهت برج خنک کن

آب لازم جهت برج خنک کن بایستی فاقد املاحی باشد که سریعا در لوله‌های کندانسور رسوب می‌کنند (از قبیل بی‌کربناتها). این املاح با افزودن کلرورفریک ، آب آهک و آلومینات سدیم گرفته می‌شود و سپس رسوبات جمع شده توسط یک جاروب جمع کننده به بیرون منتقل می‌شوند. به این آب که بدون سختی بی کربنات باشد، آب نرم می‌گویند. آب نرم وارد دو استخر ذخیره شده و از آنجا توسط پمپهایی جهت تامین کمبود آب به برج خنک کن فرستاده می‌شود. برای از بین بردن خزه و جلبک در این استخر ، سیستم تزریق کلر طراحی شده است.

سیستم تصفیه آب جهت تولید بخار

چون آب مورد نیاز برای تولید بخار و جبران کمبود سیکل آب و بخار بایستی کیفیت بسیار بالایی داشته باشد، لذا برای این منظور از یک سیستم مشترک برای هر دو واحد استفاده می‌شود. بعد از اینکه مقداری از سختی آب گرفته شد، وارد سه دستگاه فیلتر شنی می‌شود، سپس به مخزن ذخیره وارد و از آنجا توسط سه عدد پمپ به طرف فیلتر کربنی فعال فرستاده می‌شود، تا کلر موجود در آب بوسیله زغال فعال جذب شود. بعد از این فیلتر یک مبدل حرارتی در نظر گرفته شده که دمای آب را در 25 درجه سانتیگراد ثابت نگه می‌دارد.

سپس این آب وارد دو دستگاه فیلتر 5 میکرونی شده و ذراتی که قطر آنها بیشتر از 5 میکرون می‌باشند، توسط این فیلترها جذب و وارد دو دستگاه ریورس اسمز می‌گردد. در این دستگاه 90% املاح محلول در آب گرفته می‌شود. آب پس از این مرحله وارد مخزن زیرزمینی می‌گردد. سپس توسط سه پمپ به فیلترهای کاتیونی و آنیونی وارد شده و پس از تنظیم PH و کنترل از نظر شیمیایی به مخازن ذخیره آب وارد و مورد استفاده قرار می‌گیرد.

بویلر

بویلر نیروگاه دارای درام بالائی و پائینی بوده و به صورت گردش اجباری توسط سه عدد پمپ سیرکوله (Boiler Circulation Watepump) و کوره ، تحت فشار می‌باشد. درام بالایی معمولا به وزن 110 تن در ارتفاع 50.6 متری و ضخامت جداره 11 سانتیمتر می‌باشد. بویلر دارای 16 مشعل هست که در چهار طبقه و در چهار گوشه با زاویه ثابت قرار گرفته‌اند. مشعلهای ردیف پائین برای هر دو سوخت مازوت و گازوئیل بکار می‌رود.

توربین

نیروگاه از نوع ترکیب متوالی در یک امتداد (Tadem Compound) و دارای سه سیلندر فشار قوی ، فشار متوسط و فشار ضعیف می‌باشد که توربین فشار قوی و فشار متوسط در یک پوسته قرار گرفته و در پوسته دیگر توربینهای فشار ضعیف قرار دارند. توربین فشار قوی 8 طبقه و توربین فشار متوسط 5 طبقه و توربین فشار ضعیف با دو جریان متقارن و هر یک دارای 5 طبقه است. بخار از طریق دو عدد شیر اصلی در دو طرف توربین و شش عدد شیر کنترل وارد توربین فشار قوی شده و بعد از انبساط در چندین طبقه از توربین به بویلر بر می‌گردد. سپس وارد توربین فشار متوسط شده و بعد از انبساط توسط یک لوله مشترک وارد توریبن فشار ضعیف گردیده و به طرف کندانسور می‌رود.

کندانسور

کندانسور نیروگاه از نوع سطحی یک عبوری با جعبه آب مجزا می‌باشد که در زیر توریبن فشار ضعیف قرار گرفته است. برای ایجاد خلا کندانسور از دو نوع سیستم استفاده می‌شود که سیستم اول در موقع راه اندازی و توسط یک مکنده هوا انجام می‌یابد. در طول بهره برداری خلا لازم توسط دو دستگاه پمپ تامین می‌گردد که این پمپها فشار داخل کندانسور را کاهش می‌دهند.

ژنراتور

ژنراتور طوری طراحی شده است که در مقابل اتصال کوتاه و نوسانات ناگهانی بار و احیانا انفجار هیدروژن در داخل ماشین مقاومت کافی داشته باشد. سیستم تحریک آن شامل یک اکساتیر پیلوت (Pilot exiter) با ظرفیت 45 کیلوولت آمپر می‌باشد و جریان تحریک اکسایتر پیلوت در لحظه Flashing از طریق باطری خانه تامین می‌شود. ضمنا سیم پیچهای دستگاه توسط هوا خنک کاری می‌شوند.

ترانسفورمرها و تغذیه داخلی نیروگاه

1-ترانس اصلی (Main Ttansformer):این ترانس به صورت سه تک فاز با ظرفیت هر کدام 150 مگا ولت آمپر و فرکانس 50 هرتز و امپرانس ولتاژ 14.2 درصد به عنوان Step Up Tranformer ، جهت بالا بردن ولتاژ خروجی ژنراتور از 20 کیلو ولت تا 230 کیلو ولت بکار رفته است. در ضمن نسبت تبدیل ، 10.20%±247 کیلو ولت می‌باشد.

2-ترانس واحد (Unit Transformer):این ترانس با ظرفیت 35/22/22 مگا ولت آمپر و نسبت تبدیل 3/316/516%±20 و فرکانس 50 هرتز و امپدانس ولتاژ 8.5% و تپ چنجر Off- Loud ، ولتاژ 20 کیلو ولت خروجی ژنراتور را تبدیل به 6 کیلو ولت نموده و به منظور تامین مصارف داخلی نیروگاه در حین بهره برداری بکار می‌رود.

3-ترانس استارتینگ (Start up Trans): این ترانس به تعداد دو عدد ، به نامهای LTB و LTA و با ظرفیت 25/25/25 مگا ولت آمپر و نسبت تبدیل 10%±3/6/10%± کیلو ولت و فرکانس 50 هرتز و امپدانس 10% و تپ چنجر On Lead ، ولتاژ 230 کیلو ولت شبکه را تبدیل به 6 کیلو ولت نموده و شینه‌ها را طبق شکل شماتیک ضمیمه تغذیه می‌نماید.

4-ترانس تغذیه (Auxiliary Trans): ترانس تغذیه در ظرفیتهای مختلف 630/1600/2500 کیلو ولت آمپر ، ولتاژ 6 کیلو ولت را تبدیل به 400 ولت می‌نماید که جهت تامین مصارف داخلی فشار ضعیف بکار می‌رود.



devil تاریخ یکشنبه 85/1/27 ساعت 8:11 عصر


توان الکتریکی که اغلب به عنوان برق یا الکتریسیته شناخته می شود، شامل تولید و ارایه انرژی الکتریکی به میزان کافی برای راه اندازی لوازم خانگی، تجهیزات اداری، دستگاه های صنعتی و فراهم آوردن انرژی کافی برای روشنایی، پخت و پز، گرمای خانگی و صنعتی و فرایندهای صنعتی بکار می رود.

تاریخچه:


اگرچه که الکتریسته به عنوان نتیجه واکنش شیمیایی ای که در یک پیل الکترولیک از زمانی که الساندرو ولتا در سال1800م این آزمایش را انجام داد، شناخته می شده است، اما تولید آن به این روش گران بوده و هست. در سال 1831م، میشل فارادی ماشینی ابداع کرد که از حرکت چرخشی تولید الکتریسته می کرد، اما حدود پنجاه سال طول کشید تا این فن آوری از نظر اقتصادی مقرون به صرفه شود. در سال 1878م، توماس ادیسون جایگزین عملی تجاری ای را برای روشنایی های گازی و سیستم های حرارتی ایجاد کرد و به فروش رساند که از الکتریسته جریان مستقیمی استفاده می کرد که بطور منطقه ای تولید و توزیع شده بود، استفاده می کرد. در سیستم جریان مستقیم ادیسون، ایستگاه های تولید توان اضافی می بایست نصب می شدند. بدلیل اینکه ادیسون قادر نبود سیستمی را تولید کند که به ژنراتورهای چندگانه اجازه بدهد که به یکدیگر متصل شوند، گسترش سیستم او نیاز داشت که تمامی ایستگاه های تولید جدید مورد نیاز ساخته شوند.

نیاز به نیروگاه های اضافی ابتدا توسط قانون اهم بیان شده است: بدلیل اینکه تلفات با مربع جریان یا بار و با خود مقاومت متناسب است، بکار بردن کابل های طولانی در سیستم ادیسون به مفهوم داشتن ولتاژهای خطرناک در برخی نقاط یا کابل های بزرگ و گران قیمت و یا هر دوی اینها بود.

نیکولا تسلا که مدت کوتاهی برای ادیسون کار می کرد و تئوری الکتریسته را بگونه ای درک کرده بود که ادیسون درک نکرده بود، سیستم جایگزینی را ابداع کرد که از جریان متناوب استفاده می کرد. تسلا بیان داشت که دو برابر کردن ولتاژ جریان را نصف می کند و منجر به کاهش تلفات به میزان 4/3 می شود و تنها یک سیستم جریان متناوب اجازه انتقال بین سطوح ولتاژ را در قسمت های مختلف آن سیستم ممکن می سازد. او به توسعه و تکمیل تئوری کلی سیستم اش ادامه داد و جایگزین تئوری و عملی ای را برای تمامی ابزارهای جریان مستقیم آن زمان ابداع کرد و ایده های بدیعش را در سال 1887م در 30 حق انحصاری اختراع به ثبت رساند.

در سال 1888م کار تسلا مورد توجه جرج وستینگهاوس که حق انحصاری اختراع یک ترانسفورماتور را در اختیار داشت و یک کارخانه روشنایی را از سال 1886م در گریت بارینگتون، ماساچوست راه اندازی کرده بود، قرار گرفت. اگرچه که سیستم وستینگهاوس می توانست از روشنایی های ادیسون استفاده کند و دارای گرم کننده نیز بود، اما این سیستم دارای موتور نبود. توسط تسلا و اختراع ثبت شده اش، وستینگهاوس یک سیستم قدرت برای یک معدن طلا در تلورید، کلورادو در سال 1891 ساخت که دارای یک ژنراتور آبی 100 اسب بخار(75 کیلو وات) بود که یک موتور 100 اسب بخار (75 کیلو وات) را در آنسوی خط انتقالی به فاصله 5/2 مایل (4 کیلومتر) تغذیه می کرد. سپس در یک قرارداد با جنرال الکتریک که ادیسون مجبور به فروش آن شده بود، شرکت وستینگهاوس اقدام به ساخت یک نیرگاه در نیاگارا فالس کرد که دارای سه ژنراتور تسلای 5000 اسب بخار بود که الکتریسته را به یک کوره ذوب آلومینیوم در نیاگارا ، نیویورک و به شهر بوفالو، نیویورک به فاصله 22 مایل (35 کیلومتر) انتقال می داد. نیروگاه نیاگارا در 20 آوریل 1895م شروع به کار کرد.

انرژی الکتریکی در حال حاضر


امروزه سیستم انرژی الکتریکی جریان متناوب تسلا کماکان مهمترین ابزار ارایه انرژی الکتریکی به مصرف کنندگان در سراسر جهان است. با وجود جریان مستقیم ولتاژ بالا (HVDC) برای ارسال مقادیر عظیم الکتریسته در طول فواصل بلند بکار می رود، اما قسمت اعظم تولید الکتریسته، انتقال توان الکتریکی، توزیع الکتریسته و داد و ستد الکتریسته با استفاده از جریان متناوب محقق می شود.

در بسیاری از کشورها شرکت های توان الکتریکی کلیه زیرساخت ها را از نیروگاه ها تا زیرساخت های انتقال و توزیع در اختیار دارند. به همین علت، توان الکتریکی به عنوان یک حق انحصاری طبیعی در نظر گرفته می شود. صنعت عموماْ به شدت با کنترل قیمت ها کنترل می شود و معمولا مالکیت و عملکرد آن در دست دولت است. در برخی کشورها بازارهای الکتریسته وسیع با تولید کننده ها و فروشندگان الکتریسته، الکتریسته را مانند پول نقد و سهام معامله می کنند.



devil تاریخ یکشنبه 85/1/27 ساعت 8:4 عصر

ابداع مفهوم انرژی قطعا یکی ار برجسته‌ترین نمونه‌های خلاقیت بشر در زمینه علمی است. مطالعه علمی عالم فیزیکی ، از هر نوع که باشد در نهایت سر از مفاهیم ماده و انرژی در می‌آورد. این دو مفهوم در کنار هم ، همان چیزی است که عالم را تشکیل می‌دهد. درک شهودی ما از ماده در همان سالهای آغازین زندگی شکل می‌گیرد و حتی همچنین از جنبه‌های کمی آنرا هم شامل می‌شود. اما در مقابل پنداره مربوط به انرژی ظریفتر و انتزاعی تر است. ما معمولا نمی‌توانیم انرژی را مستقیما حس کنیم: انرژی چیزی نیست که بتوانیم آنرا لمس کنیم، ببینیم و یا بشنویم. در عوض انرژی را معمولا در جسمی که یا جسم دیگری برهمکنش دارد احساس می‌کنیم.

مفهوم انرژی مکانیکی

مجموع انرژی پتانسیل و انرژی جنبشی هر جسم نسبت به محیط و نیز می‌توانیم قانون بقای انرژی مکانیکی را مطرح کنیم. انرژی مکانیکی به یکی از انواع متمایز انرژی نسبت به دیگر انواع انرژی مثل انرژی الکترومغناطیسی ، هسته‌ای ، اتمی و یا شیمیایی است. که همیشه با مکان حرکت یا حرکت ماده یا جسم مادی سر و کار دارد. انرژی مکانیکی به دو صورت جنبشی و پتانسیل هستند.

قانون پایستگی انرژی مکانیکی

قانونی که بنا به آن ، در هر دستگاه پایستار ، انرژی مکانیکی کل پایسته (ثابت) است. یعنی اگر دستگاهی بدون اصطکاک یا مقاومت هوا باشد، مجموع انرژیهای پتانسیل و جنبشی آن ثابت است.

سیر تحولی و رشد

با آنکه قضیه کار - انرژی مستقیما از قانون دوم نیوتن بدست می‌آید، اما بد نیست یادآوری شود که مفهوم انرژی در زمان نیوتن هنوز ابداع نشده بود. تقریبا غیر ممکن است که بتوانیم مفهوم انرژی را بدون در نظر گرفتن مفهوم کار ، که رابطه تنگاتنگی با آن دارد به تصویر در آوریم. کار عبارت است از حاصل ضرب نیروی وارد بر بک جسم (ااF) و جابه جایی آن جسم (d) در اینجا ااF مؤلفه‌ای از نیرو است که جابجایی موازی است در شکل نمادین داریم w = f.d یا w = ∫f.dr که در آن w کار انجام شده در این جابجایی است.

انرژی پتانسیل مکانیکی

اصطلاح انرژی مکانیکی برای توصیف وضعیتی بکار می‌رود که در آن یک جسم یا مقداری جرم بخاطر موقعیت یا مکانش توانایی انجام کار دارد و نمونه‌ای از جسمی که بخاطر مکانش دارای انرژی پتانسیل است نشان داده می‌شود. در این شکل گلوله به جرم m را می‌بینند که درست بالای سر بیضی که گلوله را نگه داشته است ناگهان رها بشود. گلوله روی میخ می‌افتد و آنرا بیشتر در تخته فرو می‌برد. از دیدگاه علمی ، می‌گوییم گلوله قبل از فرو افتادن انرژی پتانسیل گرانشی داشته است.

در اینجا دلیل استفاده از اصطلاح انرژی پتانسیل ، g انرژی پتانسیل به معنی انرژی ذخیره‌ای و بالقوه برای ما روشین می‌شود. انرژی موجود در گلوله تا پیش از رها شدن آشکار شدنی نیست. مقدار انرژی پتانسیل گلوله پیش از این که رها بشود برابر است با mgH ارتفاع گلوله است که از مرکز نقطه تا بالای تخته اندازه گیری می‌شود. در حقیقت کمیت mgH درست همان کاری است که درصورت سقوط گلوله از ارتفاع H ، نیروی گرانی می‌تواند روی گلوله انجام بدهد.

انرژی پتانسیل گرانشی

با آنکه گلوله پتانسیل انجام کار (یعنی فرو رفتن میخ در تخته) را دارد. اما تا وقتی که به علاوه ، ان انرژی پتانسیل کاری را به دلیل گرانشی می گویند که به محل رها شدن گلوله نیروی وزن mg گلوله شتاب می‌دهد.

انرژی جنبشی مکانیکی

گلوله همین که شروع به سقوط کرد انرژی جنبشی کسب می‌کند، که در واقع انرژی ناشی از حرکت گلوله است. اکنون انرژی مکانیکی گلوله ناگهان آشکار می‌شود. قطعا هر کس که شاهد سقوط گلوله‌ای سنگین بوده باشد خیلی زود انرژی آنرا حس کرده است. مقدار انرژی جنبشی گلوله برابر است با: mV2/2 که در آن v سرعت گلوله است. البته موقعی که گلوله سقوط می‌کند می‌گوییم انرژی پتانسیل از دست می‌دهد (چون ارتفاعش کم می‌شود) و انرژی جنبشی بدست می‌آورد (چون مداوم سرعتش زیاد می‌شود).

نکته‌ای در مورد انرژی پتانسیل و جنبشی

یک نکته مهم درباره این دو صورت انرژی این است که مجموع آنها تقریبا ثابت می‌ماند. به این دلیل می‌گوییم تقریبا ثابت که کمی از انرژی گلوله ، در حین سقوط ، بخاطر برخورد با مولکولهای هوا تبدیل به گرما می‌شود (در اجسامی مانند شهاب سنگها که با سرعتهای خیلی زیاد سقوط می‌کنند، مقداری زیاد از انرژی پتانسیل تبدیل به گرما می‌شود). پس در جایی که هوا وجود نداشته باشد مثل سطح کره ماه یا داخل محفظه‌ای خلأ ، می‌توانیم بگوییم که مجموع انرژیهای پتانسیل و جنبشی ثابت می‌ماند. به صورت ریاضی می‌توانیم mgh + 1/2 mv2 = mgH که در آن h عبارت است از ارتفاع گلوله از بالای تخته در لحظه‌ای که سرعتش برابر v می‌شود. در پایان و به ارتباط میان انرژی و کار باز می‌گردیم.



لیست کل یادداشت های این وبلاگ


 

[ خانه | مدیریت وبلاگ | شناسنامه | پست الکترونیک ]

©template designed by: www.parsitemplates.com